A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity

We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilizedmixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The en...

متن کامل

A finite element method for nearly incompressible elasticity problems

A finite element method is considered for dealing with nearly incompressible material. In the case of large deformations the nonlinear character of the volumetric contribution has to be taken into account. The proposed mixed method avoids volumetric locking also in this case and is robust for λ→∞ (with λ being the well-known Lamé constant). Error estimates for the L∞-norm are crucial in the con...

متن کامل

On finite element formulations for nearly incompressible linear elasticity

In this paper we present a mixed stabilized finite element formulation that does not lock and also does not exhibit unphysical oscillations near the incompressible limit. The new mixed formulation is based on a multiscale variational principle and is presented in two different forms. In the first form the displacement field is decomposed into two scales, coarse-scale and fine-scale, and the fin...

متن کامل

Gauge finite element method for incompressible flows

A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that aris...

متن کامل

Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids

An extension of the generalized finite element method to the class of mixed finite element methods is presented to tackle heterogeneous systems with nearly incompressible non-linear hyperelastic material behavior. In particular, heterogeneous systems with large modulus mismatch across the material interface undergoing large strains are investigated using two formulations, one based on a continu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2019

ISSN: 1064-8275,1095-7197

DOI: 10.1137/18m1182395